MISSOURI HIGHWAYS AND TRANSPORTATION COMMISSION PLANS FOR PROPOSED NSRR MAINLINE BRIDGE AT MP S-45.25 OVER I-70

WENTZVILLE, MO

NOT FOR CONSTRUCTION

GENERAL INFORMATION

OWNER: MR. JACOB WATSON ENGINEER PUBLIC IMPROVEMENTS BRIDGES AND STRUCTURES NORFOLK SOUTHERN CORPORATION 1200 PEACHTREE STREET NE ATLANTA, GA 30309 TELEPHONE: (404) 529-1225 EMAIL: JACOB.WATSON@NSCORP.COM

CONVENTIONAL SYMBOLS (USED IN PLANS) SYMBOL EXISTING TRACK CENTERLINE NEW TRACK CENTERLINE EXISTING TRACK RELOCATE TO EXISTING TRACK RELOCATE FROM EXISTING TRACK REMOVAL

Detailed JUNE 2023 Checked JUNE 2023

THE EXISTENCE AND APPROXIMATE LOCATION OF UTILITY FACILITIES KNOWN TO EXIST, AS SHOWN ON THE PLANS, ARE BASED ON THE BEST INFORMATION AVAILABLE TO THE COMMISSION AT THIS TIME. THIS INFORMATION IS PROVIDED BY THE COMMISSION "AS-IS" AND THE COMMISSION EXPRESSLY DISCLAIMS ANY REPRESENTATION OR WARRANTY AS TO THE COMPLETENESS, ACCURACY, OR SUITABILITY OF THE INFORMATION FOR ANY USE. RELIANCE UPON THIS INFORMATION IS DONE AT THE RISK AND PERIL OF THE USER, AND THE COMMISSION SHALL NOT BE LIABLE FOR ANY DAMAGES THAT MAY ARISE FROM ANY ERROR IN THE INFORMATION. IT IS, THEREFORE, THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY THE EXISTENCE, LOCATION AND STATUS OF ANY FACILITY. SUCH VERIFICATION INCLUDES DIRECT CONTACT WITH THE LISTED UTILITIES.

Note: This drawing is not to scale. Follow dimensions.

Sheet No. S1 of S48

8/18/2023

SHEET NO

ST. CHARLE J6I0624 CONTRACT ID.

PROJECT NO.

A5801

INDEX OF SHEETS

INDEX OF SHEETS

SHEET NUMBER

DESCRIPTION	SHEET	NUMBER
Location Map / Title Sheet		S1
Index of Sheets		
General Notes		
General Notes		
General Notes and Quantities		S5
Site Plan		S6
Top of Rail Profile		S7
Staged Construction Phasing (1 of 2)		S8
Staged Construction Phasing (2 of 2)		S9
Typical Sections Thru Bridges (Shoofly and Proposed)		S10
General Plan and Elevation Main Track		S11
Typical Sections		S12
General Plan and Elevation (Future Second Main Track)		S13
Typical Section Thru Bridges (Main Track and Future)		S14
Foundation Layout		S15
Abutment Plan and Elevation		S16
Abutment Details		S17
Approach Slab Details		S18
Pier Plan and Elevation		S19
Pier Details		S20
Span 1 Framing Plan and Girder Elevation		S21
Span 1 Superstructure Details		S22
Spans 2 and 3 Framing Plan and Girder Elevation		S23
Spans 2 and 3 Superstructure Details		524

Optional Splice Detail for Spans 2 and 3	S25
Span 4 Framing Plan and Girder Elevation	S26
Span 4 Superstructure Details	S27
End Diaphragm Details	S28
Bearing Details	S29
Span 1 Slab Reinforcing	S30
Spans 2 and 3 Slab Reinforcing	S31
Span 4 Slab Reinforcing	S32
Miscellaneous Slab Details	S33
Ballast Curb Details	S34
Slab Reinforcing Materials	S35
Deck Drain Layout	S36
Deck Drain Details	S37
Waterproofing Details (1 of 2)	S38
Waterproofing Details (1 of 2)	S39
Handrail Plan	S40
Handrail Details	S41
Boring Logs (1 of 7)	S42
Boring Logs (2 of 7)	S43
Boring Logs (3 of 7)	S44
Boring Logs (4 of 7)	S45
Boring Logs (5 of 7)	S46
Boring Logs (6 of 7)	S47
Boring Logs (7 of 7)	S48

BRIDGE NO.

INDEX OF SHEETS

DESCRIPTION

GENERAL NOTES:

CONSTRUCTION SPECIFICATIONS:

Provide materials and perform work in accordance with the following:

MoDOT CMS: Current Missouri Standard Specifications for Highway Construction

The supplemental specifications, and special provisions for this project as follows:

1. Norfolk Southern Railway standard specifications for materials and construction, current edition

NORFOLK SOUTHERN RAILROAD COORDINATION AND MAINTENANCE-OF-WAY: The construction program will require close coordination and cooperation with Norfolk Southern personnel for all operations that involve track work and rail service. The time of specific track closings, openings, switching and other required rail, tie and ballast work in all cases shall be also subject to Norfolk Southern approval. Contractor is responsible for all coordination and phasing with MoDOT.

All work to be performed on, over, under, or adjacent to the railroad right-of-way shall comply with the Norfolk Southern Railway Company ("railroad", "NSRR" or "NS") public projects manual (Appendix E. Special Provisions for the Protection of Railway Interests, and Appendix H1, Overhead Grade Separation Design Criteria). When in conflict with other project specifications, the most stringent one shall apply.

The contractor shall not commence any work on railroad rights -of-way until he has complied with the conditions presented on NS public projects manual (see Appendix E, Norfolk Southern - Special Provisions for Protection of Railway Interests).

The contactor shall so arrange and conduct his work that there will be no interference with railroad's operations. Whenever work is liable to affect the operations or safety of trains, the methods of doing such work shall first be submitted to the railroad engineer for approval, but such approval shall not relieve the contractor from any liability.

All proposed submittals required either by the MoDOT CMS or the NSRR-PPM shall be submitted to NSRR for review and approval.

All ballast, rails, ties and incidental track metal work for the tracks will be furnished and placed by Norfolk Southern with the exception of the 8" pre-ballast over the waterproofing.

The contractor shall maintain a construction clearance of 10 feet horizontally (for elements below the top of rail) from the centerline of tracks and 22 feet vertically from a point level with the top of the higher rail, at all times. Clearance of 14 feet horizontally shall be provided to any temporary works installed above the top of rail. except as indicated by these plans or approved by NSRR.

The designated Norfolk Southern Railroad contact for this project is as follows:

Mr. Jacob Watson Engineer Public Improvements bridges and structures Norfolk Southern Corporation 1200 Peachtree Street NE Atlanta, GA 30309 phone: (404) 529-1225 email: jacob.watson@nscorp.com

For projects requiring more than 30 consecutive days of flagging, contractor shall provide the flagman a small work area with a desk/counter and chair within the field/site trailer, including the use of bathroom facilities, where the flagman can check in/out with the project, as well as to the flaaman's home terminal.

The work area should provide access to two (2) electrical outlets for recharging radio(s), and a laptop computer; and have the ability to print off needed documentation and orders as neeeded at the field/site trailer. This should aid in maximizing the flagman's time and efficiency on the project.

NORFOLK SOUTHERN RAILROAD COORDINATION AND MAINTENANCE-OF-WAY (CONT.): DESIGN SPECIFICATIONS (CONT.): The railroad will be provided as-built drawings showing the actual clearances as constructed, depth, size, and location of all foundation components shall be shown on the drawings. (See NS Public Projects Manual, Appendix H1, Section 8a).

"One Call" services do not locate buried railroad signal and communications lines. The contractor shall contact the railroad's representative 2 days in advance of work at those places where excavation, pile driving, or heavy loads may damage the railroad's underground facilities. Upon request from the contractor or sponsor, railroad forces will locate and paint mark or flag the railroad's underground facilities. The contractor shall avoid excavation or other disturbance of these facilities. If disturbance or excavation is required near a buried railroad facility, the contractor shall coordinate with the railroad to have the facility potholed manually with careful hand excavation. The facility shall be protected by the contractor during the course of the disturbance under the supervision and direction of the railroad's representative. (see NS Public Projects Manual, Appendix E. Section 3.d).

All utility installations or relocations that are required in conjunction with this project can be installed or relocated as part of the project provided the construction is performed by the project contractor or project contractor's sub-contractor. However, the utility must submit an application for the installation or relocation to RailPros for appropriate handling for license agreement and applicable fees. For utility applications go to: www.nscorp.com/about nsrealestate/learnaboutourservices/wire/pipelineandfiber opticsprojects. Note: License agreement must be executed prior to utility being installed or relocated.

DIMENSIONS AND BOUNDARIES:

All dimensions shown are horizontal unless notes otherwise. Superstructure dimensions shown are given at a temperature of

EXCAVATION:

The contractor is responsible for the stability of all excavated slopes. Direct surface runoff away from the excavation. Groundwater levels may fluctuate. Seasonally as a function of precipitation and other hydrological factors. Therefore, there may be considerable change in the water table or the presence of water where not previously encountered. Perform all excavations in accordance with osha shoring. Excavation and shoring shown in these plans assume an OSHA Type B soil (to be confirmed by the contractor).

Excavate according to construction sequences, drawings and notes. Do not over excavate.

DESIGN SPECIFICATIONS:

The design was completed in accordance with the following design standards:

NSRR-PPM: Norfolk Southern Railway Public Projects Manual, current edition, including appendices

AREMA: American Railway Engineering and Maintenance-of-Way Association, current edition (2021 used herein)

* AREMA, chapters 8, 9 & 15

* NSRR-PPM appendix H.2 "Underpass Grade Seperation Design Criteria"

* All reinforced concrete design as per AREMA, Chapter 8, Table 8-2-5, Load Factor Design.

* Structural steel design as per AREMA chapter 15. Allowable Stress Design.

* Design Live Load:

Cooper E-80 including Alternate Live Load on 4 axles. design speed of 60 mph - freight.

* Live Load Distribution:

To steel superstructure members per AREMA 15-1.3.4 to concrete deck per AREMA 8-2.2.3(c).

* Impact Load: Rolling equipment without hammer blow steel superstructure per AREMA chapter 15-1.3.5 concrete deck per AREMA 8-2.2.3(d).

* Dead Load:

9" minimum of ballast and includes 6" additional ballast for future track surfacing.

* Fatigue analysis is based on AREMA 15-1.3.13.

* The superstructure is analyzed as non-composite for strength requirements and composite for live load deflection requirements.

DESIGN DATA:

Superstructure concrete shall obtain a 28 day compressive strength of 4,000 psi (minimum) (deck and parapets). Substructure concrete shall obtain a 28 day compressive strength of 5,000 psi (minimum) (abutments, piers, footings and foundations).

Chamfer all exposed concrete edges and corners 3/4" except as noted.

Premolded (non-sag) expansion joint filler material shall be either rubber or cork conforming to ASTM D1752.

All construction joints shown on these plans shall be required unless shown as optional. Construction joints permitted except as shown on the plans, or where written approval from the engineer has been obtained.

* Structural Steel Superstructure steel shall be ASTM A709, Grade 50W T2 (50,000 psi minimum yield strength) Steel shear connectors shall be ASTM A108, Grade 1010 through 1020 (either semi- or fully killed)

* Structural Bolts

Unless otherwise noted, all structural bolts shall be ASTM F3125, Grade A325, high strength, Type 3, all washers shall be ASTM F436 and all nuts shall be heavy hex ASTM A563. All bolts, nuts and washers shall be painted after installation. Galvanized bolts shall not be used.

* Anchor Bolts shall be ASTM F1554 Grade 105 (55 ksi minimum yield strength) Galvanized

* DESIGN DENSITIES:

490 pcf Steel: Concrete: 150 pcf 120 pcf Ballast: 125 pcf Soil: Track: 200 plf

- * For cast-in-place concrete notes, see design data notes on this sheet and see Sheets No. S14 through S18 and S30 through S34.
- * For structural steel notes, see design data notes on this sheet and see Sheets No. S21 through S29.
- * For bridge deck waterproofing, see Sheets No. S33, S38, and S39 and NSRR-PPM Section H.4.3
- * For painting shop fabricated bridge steel, see Special Provisions.

Vertical clearance for Route I-70 traffic during construction shall be $16^{\prime}-6^{\prime\prime}$ minimum over a $68^{\prime}-0^{\prime\prime}$ wide horizontal opening of the roadway in each direction.

Class B-2 Concrete

Reinforcing Steel

(Epoxy Coated)

ESTIMATED WEIGHT FOR MAINLINE BRIDGE

Span N	0.	Ιοται
1	pound	327,650
2	pound	500,880
3	pound	500,880
4	pound	167,600

Lifting weights include a 20% contingency

8/18/2023

STATE 1 - 70MΩ DISTRICT SHEET NO. S3 BR

ST. CHARLES IOR NO J6I0624 CONTRACT ID.

PROJECT NO.

BRIDGE NO A5801

CA MO WEST |TY. | |388-2

Total

246.8

44,680

cu, yard

pound

GENERAL NOTES

ESTIMATED QUANTITIES

FOR SLAB ON STEEL

Item

DRILLED SHAFT SPECIAL PROVISIONS:

The following work consists of constructing the rock sockets and drilled shafts per specifications acceptable to the railroad.

MATERIALS:

Concrete:

All concrete material, placement, and workmanship shall be in accordance with chapter 8 of the current edition of the AREMA manual for Railway Engineering and the American Concrete Institute manual of concrete practices.

Compressive strength - As specified per location.

Concrete shall be proportioned such that the water-cement ratio (by weight) does not exceed .45. Concrete must contain a minimum of 6 sacks of cement per cubic yard of concrete.

Aggregates shall be graded in accordance with ASTM C33.

Coarse aggregate shall be size no. 67.

Fine aggregate shall be natural sand.

Air content shall be between 5% and 7% (by volume).

Admixtures shall be submitted to the railroad for acceptance.

Prior to the addition of admixtures, concrete shall have a slump not greater than 4 inches. During placement, concrete shall have a slump of not less than 4 inches using the dry uncased or permanent casing method, 6 inches using the temporary casing method, or 7 inches using the slurry displacement method.

Curing shall be accomplished by wet curing or membrane curing compound. Membrane curing compound shall conform to ASTM C309, Type 2.

Do not use calcium chloride or any admixture containing intentionally added chloride ions. Testing for chloride ions is not required.

Reinforcing Steel:

All reinforcing steel materials and placement shall be in accordance with chapter 8 of the current edition of the AREMA manual for Railway Engineering.

Reinforcing steel shall be deformed, new billet bars per current ASTM A615 specifications and meet Grade 60 requirements. Bars to be welded shall conform to the requirements of ASTM A706.

Fabrication of reinforcing steel shall be per chapter 7of the CRSI manual of standard practice. Dimensions of bending details are out to out of bar.

Reinforcina steel cage shall be prefabricated. Reinforcina steel is to be securely tied to prevent deformation or relative displacement of bars during handling and concrete placement. Tack welding of reinforcing is prohibited.

Splice bars in conformance with the drawings. Submit alternate splice details to the railroad for acceptance.

The minimum clear distance between vertical reinforcing steel, including lapped bars, shall be 1.5 times the bar diameter or four times the maximum aggregate size. whichever is larger.

Place reinforcing steel cage immediately prior to the start of concrete placement. Provide spacer rollers to maintain the reinforcing cage at the proper location. Secure the cage against displacement.

No reinforcing steel vertical movement during casing withdrawal will be permitted.

Steel Casina:

Permanent steel casing shall have sufficient strength to withstand handling stresses, drilling stresses, concrete pressures, and surrounding earth and water pressures, steel for permanent casing shall conform to the requirements of ASTM A283: Grade C. ASTM A36. or ASTM A929.

Submit size, wall thickness, type of steel, and length of permanent casing to the railroad for acceptance.

Temporary steel casing shall have sufficient strength for protection of personnel or to permit advancement of shaft through caving ground. Make diameter of excavation such that the annular void space outside any permanent or temporary casing is minimized.

Furnish full-penetration welds meeting the requirements of "structural welding code - steel" (ANSI/AWS DI. I) of the American Welding Society requirements for joints in non-corrugated permanent steel casings. Welders shall be AWS certified for the welds being installed.

Deliver casing to site in undamaged condition. Handle and protect casing to maintain diameter within 2 percent.

Sand-cement Grout Strength:

Place sand-cement grout suitable to fill annular void space outside permanent casing and temporary CMP in a manner acceptable to the railroad.

Sand-cement grout mix shall consist of a minimum of two socks of type II cement per cubic yard of grout and natural sand conforming to ASTM C33. The water - cement ratio shall be less than 1.0.

CONSTRUCTION REQUIREMENTS:

Drilled shaft construction shall be in accordance with the most current edition of the American Railway Engineering and Maintenance-of-Way Association (AREMA) manual of Railway Engineering, Chapter 8: Concrete Structures and Foundations, Part 24: Drilled Shaft Foundations.

Installation methods shall be compatible with those noted on the drawings and shall be submitted to the railroad for acceptance.

If actual subsurface conditions differ substantially from those provided, notify the railroad immediately by phone, e-mail, or fax and in writing within 48 hours of such a determination.

Develop a program for quality control and provide to the railroad for review and acceptance.

The contractor shall provide inspection of the drilled shaft construction, perform required testing on construction materials, for determining the acceptability of the shaft installation within the terms and conditions of these notes and the drawings. The contractors quality control plan shall state their process and personnel responsible for certifying inspection and test results.

Provide an on-site supervisor and drillers having a minimum of five years of acceptable experience with the installation method(s) to be used.

Perform all excavation and concrete placement work in the presence of the railroad unless otherwise permitted.

Schedule and provide time and means for inspection of each drilled shaft before concrete placement.

Provide the means and opportunity to take samples and make tests during concrete placement.

CONSTRUCTION REQUIREMENTS (CONT.):

Submit the following to the railroad at least 14 days before the start of the work, if applicable:

- 1. Experience record of supervisory and drilling personnel.
- 2. Quality control program.
- 3. Detailed description of shaft construction method including casing withdrawal.
- 4. List of equipment and operating procedures.
- 5. Concrete proportions including evidence that proposed concrete materials and mix proportions conform to the requirements of AREMA chapter 8, part 1. Submit results of trial batches if the railroad rejects the proposed mix proportions evidence.
- 6. Shop drawings showing placement of reinforcing steel, including splice details and locations.
- 7. Welding procedures for permanent casing and reinforcement.
- 8. AWS welder certification.
- 9. A test report from the slurry supplier giving the slurry type and admixtures and the physical and chemical properties of the mixed slurry.

Submit the following to the railroad during construction, if applicable:

- 1. Notification of drilling 24 hours in advance to permit in-place inspection of the finished excavation prior to placement of reinforcing steel and concrete.
- 2. Reports of material quantities including concrete.
- reinforcing steel, casing, and slurry.
 3. Certified mill test reports for reinforcing steel, including bar markings.
- 4. Down-hole slurry test results in accordance with the requirements in these notes.
- 5. Concrete batch-plant tickets containing the information required by ASTM C94.

Acceptable drilled shaft construction methods shall be based on site and subsurface conditions and on design information provided on the drawings.

Use tolerances for construction in accordance with ACI 117, except as noted.

Remove loose material and free water from bottom of drilled shafts, excavate the bottom of the shaft to a level plane within tolerance of 1 vertical to 12 horizontal, or as acceptable to the railroad. Provide bottom area not less than that shown on the drawings, or as acceptable to the railroad.

The contractor will determine actual final bearing levels and suitability of bearing stratum during excavation. For end bearing shafts, explore bearing stratum with a foundation inspection hole to a minimum depth of 10 feet or twice the diameter of the rock socket, whichever is greater, below the bottom of the rock socket. The contractor shall use the foundation inspection hole to determine the amount of casing needed and casing ordered prior to foundation inspection holes is at the contractor's risk. The contractor may be directed to extend the rock socket to a lower elevation, resulting from the engineer's evaluation of the foundation inspection cores.

Inspection of each shaft by video camera shall be performed as directed by the engineer. The camera shall be operated such that optimum clarity of detail can be obtained and all surface areas of the shaft, including the rock socket and the rock socket's base, can be observed. All scanning of the rock surfaces shall be recorded. After completion of the inspection of the rock socket, the railroad inspector will direct whether or not drilling of the shaft shall be continued to a greater depth. Recordings shall be furnished to and shall become property of the railroad upon completion of the work.

8/18/2023 STATE 1 - 70MΩ DISTRICT SHEET NO. BR S4

ST. CHARLES IOB NO J6I0624 CONTRACT ID.

PROJECT NO.

BRIDGE NO A5801

CA MO 75-WEST TY. 88-2

GENERAL NOTES

Sheet No. S4 of S48

Note: This drawing is not to scale, Follow dimensions.

Item		Substr.	Superstr.	Total
Class 1 Excavation	cu, yara			425
Removal of Bridges (L0154)	lump sum			1
Removal of Miscellaneous ACM (Non-Friable)	sq. foot			90
Ballast	tor		395	395
Bridge Approach Slab (Major)	sq. yard		36	36
Handrai I	linear foot		843	843
Drilled Shafts (3 ft. 6 in. Dia.)	linear foot	113.3		113.3
Drilled Shafts (4 ft. 0 in. Dia.)	linear foot	72.5		72.5
Rock Sockets (3 ft. 0 in. Dia.)	linear foot	60.0		60.0
Rock Sockets (3 ft. 6 in. Dia.)	linear foot	120.0		120.0
Video Camera Inspection	each	10		10
Foundation Inspection Holes	linear foot	280.0		280.0
Sonic Logging Testing	each	10		10
Class B-1 Concrete (Substructure)	cu, yard	213.5		213.5
Slab on Steel	sq. yard		942	942
Ballast Curb	linear foot		770	770
Reinforcing Steel (Epoxy Coated)	pound	90,860		90,860
Protective Coating - Concrete Bents and Piers (Epoxy)	lump sum	1		1
Waterproofing	sq. yard		1069	1069
Expansion Device (Flat Plate)	linear foot		137	137
Fabricated Structural Low Alloy Steel (Plate Girder) A709, Grade 50W	pounc		1,313,360	1,313,360
Drainage System (On Structure)	lump sum		1	1
Railroad Deck Drain	each		54	54
Fabricated Structural Steel Bearings	each		48	48

* Bearing pads are incidental to Fabricated Structural Steel Bearings.

CONSTRUCTION REQUIREMENTS (CONT.):

Excavate rock sockets as required by the drawings. Drill a probe hole to a depth of two shaft diameters to verify sound material unless waived by the railroad. Rock cored samples shall be handled in accordance with ASTM D5079.

Keep all excavated materials away from each open shaft excavation.

Dewater drilled shaft excavation prior to placing concrete. Dewater in a manner that will not create subsidence or ground loss that might adversely affect the drilled shaft or existing adjacent structures.

If water inflow or sidewall instability encountered compromises the integrity of the hole, use alternative means to reduce inflow, such as extending casing, installing outside deep wells, grouting, or other acceptable means.

Place concrete as soon as possible after completion of excavation and after acceptance. Notification of concrete placement shall be made at least 24 hours in advance unless waived by the railroad.

Complete placement of concrete in uncased excavations before the work day is completed.

CONSTRUCTION REQUIREMENTS (CONT.):

Place concrete in shaft in one continuous operation unless otherwise permitted by the railroad. Level, roughen, and clean surface of construction joints to satisfaction of the railroad prior to recommencement of concrete placement. Provide reinforcing dowels or shear key when required by the railroad.

For placing concrete underwater, use tremie or concrete pumping with acceptable procedures in accordance with AREMA Chapter 8, Section 1.14.

Perform concrete testing for quality control.

Protect tops of shafts against damage and cure and protect to prevent moisture loss and temperature extremes in accordance with AREMA Chapter 8,

Provide means and opportunity for the railroad to inspect the operation during the withdrawal of casing and placing of concrete.

Any temporary oversized casing utilized for shoring at the surface shall be withdrawn without damage to the drilled shaft for the abutment.

Fill void space between permanent casing and shaft excavation or between permanent (inner) casing and temporary casing with fluid sand-cement grout or other material using a procedure acceptable to the railroad.

Cross-Hole Sonic Log (CSL) Testing: Drilled shafts shall be evaluated by cross-hole sonic log testing. Testing pipes shall be installed BASIS OF PAYMENT: in each drilled shaft to facilitate the logging process, which will follow completion of each shaft.

Furnish and install four standard 2 inch nominal diameter steel pipes (ASTM A53, Grade B) for use in CSL testing of each drilled shaft. Pipes shall be equally spaced around the interior of the reinforcing steel cage.

Pipes shall be sufficiently regular and free from defects so as to permit the free and unobstructed passage of the probes. Pipes shall be installed such that all internal joints are flush. Pipes shall be watertight with clean internal and external faces. the latter to ensure good bond between the concrete and the pipes.

Pipes shall be fitted with a screw-on watertight shoe and cap and shall be securely fixed to the interior of the reinforcing steel cage. The pipes shall be filled with water and plugged or capped before concrete placement. The upper end of the pipe shall not be left open during or after concrete placement. The pipes shall extend at least 2'-6 above the top of the drilled shaft concrete. The lower end of the pipes shall extend to the bottom of the shaft.

Perform CSL testing no earlier than 48 hours and within 14 days after concrete placement.

No further work on shaft shall be done until CSL test reports have been reviewed and approved by NSRR.

METHOD OF MEASUREMENT:

Accepted drilled shafts and rock sockets will be measured for payment to the nearest 0.1 linear foot of length along the axis of each shaft complete-in-place. Measurement will be from the plan top of the shaft to the top of the rock socket. "Top of the rock socket" will be defined as the upper elevation at which rock occurs across the entire width of the shaft, as determined by the engineer.

Video camera inspection, as required, will be measured for payment per each.

Measurement and payment for foundation inspection holes will be to the nearest 0.1 linear foot of length along the axis of each hole by linear foot. Measurement will be from the top of the rock socket to the bottom of the foundation inspection hole. If the engineer directs foundation inspection borings more than 10 feet or twice the diameter of the rock socket, whichever is greater, below the anticipated bottom of the rock socket elevation as shown on the plans, measurement for payment for that portion of the boring in excess of 10 feet below or twice the diameter anticipated bottom of rock socket elevation as shown on the plans will be to the nearest 0.1 linear foot of excess.

Sonic logging testing of drilled shafts, as required, will be measured per each.

for all steel casing required, costs of drilling, excavation, slurry, cleaning, an the contract documents. Payment for all drilled shafts and rock sockets will be at the contract unit price per linear foot for the diameter of the drilled shafts and rock sockets specified.

Payment for one complete video camera inspection of each shaft, including the rock socket, will be paid for at the contract unit price. Payment for video camera inspection will be considered full compensation for moving in equipment, flushing turbid water from the shaft, conducting the actual scanning as specified, furnishing video recording, removing equipment, and all tools, labor and any incidentals necessary to complete the work.

Payment for foundation inspection holes will be at the contract unit price and will be considered full compensation for drilling or coring the holes, extracting and packaging samples or cores, laboratory testing, delivering the samples or cores to the specified MoDOT or NSRR location and for all other expenses necessary to complete the work.

Payment for sonic logging testing of drilled shafts as required by the engineer will be made at the contract unit price per each for Sonic Logging Testing. No payment will be made for supplementary sonic logging testing to evaluate defects. Payment for sonic logging testing will be considered full compensation for providing all equipment, access pipes, conducting the actual probing measurements as specified, furnishing

Payment will be considered full compensation acceptable method of inspection as required, furnishing and placing of concrete, grouting and incidental work and material required by

reports, removing equipment, and all tools, labor and any incidentals necessary to complete the work.

CONTRACT ID. PROJECT NO. BRIDGE NO A5801

8/18/2023

ST. CHARLES

IOB NO

J6I0624

1 - 70

DISTRICT

BR

STATE

MΩ

SHEET NO.

S5

GENERAL NOTES AND QUANTITIES

MAIN TRACK

SCALE: 1" = 100' HORIZONTALLY 1" = 10' VERTICALLY

- Track Design Notes:
 1. Design Speed = 60 MPH
 2. Track Design Per Norfolk Southern
 Public Projects Manual, 2022 Edition.
 3. Vertical Curves Meet AREMA Criteria.

TOP OF RAIL PROFILE

Note:

The Elevation of the Existing Top-Of-Rail Profile Shall Be Verified Before Beginning Construction. All Discrepancies Shall Be Brought To The Attention Of The Norfolk Southern Public Projects Engineer.

8/18/2023

ROUTE I-70 MO DISTRICT SHEET NO. BR ST. CHARLES

J6I0624

PROJECT NO.

A5801

GHWAYS AND TRANS COMMISSION

TYPICAL SECTIONS THRU BRIDGES (SHOOFLY AND PROPOSED)

Detailed JUNE 2023 Checked JUNE 2023

Beam

71"

 $8' - 9\frac{1}{8}'$

TOTAL

For Deck Drain details, see Sheet No. S37.

Note:

MΩ

* Dimensions are shown along & of cap at skew.

Note: For location of Section A-A and B-B, see Sheet No. S11.

TYPICAL SECTIONS

Detailed JUNE 2023 Checked JUNE 2023 8/18/2023

ST. CHARLES

JOB NO. J6I0624

CONTRACT ID.

PROJECT NO.

A5801

MΩ

SHEET NO.

ROUTE [-70

DISTRICT

BR

TYPICAL SECTION THRU BRIDGES (MAIN TRACK AND FUTURE)

Detailed JUNE 2023 Checked JUNE 2023

Note: This drawing is not to scale. Follow dimensions.

(*) $4 \sim B522-B525$ (Top and Bott. lengths vary, 9'-8'' max. to 4'-6'' min.) 18'-3 \frac{3}{8}" 20 등" $11' - 0\frac{3}{4}''$.12" 3'-6" 18 spa. @ 12" -B527 (E.F.) (Typ.) (*) $12 \sim B521$ (Top and Bott.) (1) 17'-11" (Max.); 11'-10" (Min.) (2) 9'-3" (Max.); 4'-6" (Min.) (3) 17'-11" (Max.); 11'-10" (Min.) Lengths vary
) & B901-B920
min. to 17'-4" r
5'-3" B526 (Top & Bott.) Br 6" (I (Top) -10" 20 spg. @ (B501-B520 (t+.), B527 11'-5'-3" (Bot-* Quantities shown for information only 3′-6″ 205" 5′-0″ 12'-25" PLAN - CONCRETE APPROACH SLAB (Both Abutment Approach Slabs Similar and Opposite Hand.) Varies from $12'-2\frac{5}{8}''$ to $18'-3\frac{3}{8}''$ -B522-B525 (Lengths vary, Top & Bott.) -B501-B520 (Lengths vary) B526 (Typ.)--B527 (E.F.) (Typ.) Notes: -B521 (Typ.) -B901-B920 (Lengths vary) 20 등" Varies from 5'-0'' to $11'-0\frac{3}{4}''$ 3'-6' SECTION A-A APPROACH SLAB DETAILS

REINFORCING STEEL SCHEDULE -APPROACH SLAR (EA)

	APPRUACH SLAD (EA.)												
MARK	BAR NO.	NO. REQ'D.	LENGTH (F†.)	TYPE	А	В	С	WIEGHT					
B501-B520	5	21	(1)	STR.	_	_	_	305					
B521	5	24	10'-0"	STR.	_	-	-	250					
B522-B525	5	8	(2)	STR.	_	-	-	30					
B526	5	8	11'-7"	STR.	_	-	-	97					
B527	5	42	9'-6"	20	2'-0"	3′-6″	2'-0"	416					
B901-B920	9	21	(3)	STR.	_	_	_	993					

BENDING DIAGRAM

Type - 20

SBRL S18 ST. CHARLE J6I0624 CONTRACT ID.

DISTRICT

8/18/2023 ROUTE

MΩ SHEET NO.

PROJECT NO. BRIDGE NO A5801

ESTIMATED QUANTITIES - APPROACH SLAB (EA.)

	ITEM		QUANTITY
-	Class B-1 Concrete (5,000 psi concrete) cu. y	/ard	20.3
-	Reinforcing Steel (Epoxy Coated) po	ound	2100

COVER: 3" Typ. Chamfer all edges $\frac{3}{4}$ " $\times \frac{3}{4}$ "

All concrete for the bridge approach slab shall be in accordance with Sec 503 (f'c =5,000 psi).

The reinforcing steel in the bridge approach slab shall be epoxy coated Grade 60 with fy = 60,000 psi.

Payment for furnishing all materials, labor and excavation necessary to construct the approach slab, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Šlab (Major) per square yard.

Detailed JUNE 2023 Checked JUNE 2023

Note: This drawing is not to scale. Follow dimensions.

Sheet No. S19 of S48

c:\pwworking\central01\d2302592\B_A5801_025_J6l0624.dgn 1:59:34 PM 8/18/2023

c:\pwworking\central01\d2302592\B_A5801_030_J6l0624.dgn 1:59:44 PM 8/18/2023

PROPOSED BRIDGE TYPICAL SECTION

* Contractor to install 8" of pre-ballast following placement of waterproofing. Rails, ties and any incidental work required to construct the tracks shall be installed by Norfolk Southern.

Notes:

Slab and curb reinforcing is based on the span. See slab reinforcing sheets for mark and spacing.

Install waterproofing, two layers of protective asphaltic panels and pre-ballast the deck with 8" of ballast. Ballast to be installed within one week of placement of the waterproofing and asphaltic panels. See Special Provisions.

For Waterproofing Details, see Sheets No. S38 and S39.

For Handrail Details, see Sheets No. S40 and S41.

For Deck Drain Details, see Sheets No. S36 and S37.

MISCELLANEOUS SLAB DETAILS

8/18/2023

ST. CHARLES

J6I0624

CONTRACT ID. PROJECT NO.

BRIDGE NO

A5801

MΩ

SHEET NO.

S33

ROUTE 1 - 7 ()

DISTRICT

BR

* Conduit to be capped at ends of barrier off the bridge.

BALLAST CURB REINFORCING DETAIL

REINFORCING AT DECK DRAIN PIPES

RAISED KEYWAY (Construction Joint)

Notes:

The inside face of the ballast curb shall be waterproofed using membrane waterproofing and waterproofing protection, See Special Provisions.

Reinforcing is based on the Span. See slab reinforcing sheets for mark and spacing.

Payment for all concrete and reinforcement, complete in place, will be considered completely covered by the contract unit price for Ballast Curb. See Special Provisions.

8/18/2023

ST. CHARLE J6I0624

CONTRACT ID.

PROJECT NO.

A5801

SHEET NO. S34

ROUTE 1 - 7 ()

DISTRICT

BALLAST CURB DETAILS

REINFORCING STEEL SCHEDULE - SLAB SPAN 1									REINF	ORC	ING ST	EEL	SCHE	DULE -	- SLA	B SPAN 2 & 3 PER SPA	N		
MARK	BAR NO.	NO, REQ'D	LENGTH (FT.)	TYPE	А	В	С	D LOCATION	WEIGHT	MARK	BAR NO.	NO. REQ'D	LENGTH (FT.)	TYPE	А	В	C D	LOCATION	WEIGHT
S300	3	198	5′-4″	6	0'-9"	2'-0"	ı' -6"	Curb	404	S301	3	234	5′-4″	6	0'-9"	2'-0"0'	-6"	Curb	470
\$400	4	32	34'-3"	STR				Curb	733	S402	4	32	40'-11"	STR				Curb	875
S401	4	16	35′-8″	STR				Curb	382	S403	4	16	39'-10"	STR				Curb	426
S499	4	224	3'-0"	STR				Slab Drains	449	S499	4	256	3'-0"	STR				Slab Drains	513
S500	5	101	21'-8"	STR				Bott, Transverse	2283	S515	5	106	21'-8"	STR				Bott, Transverse	2396
S501	5	2	20'-0"	STR				Bott. Transverse @ Ends	42	S516	5	2	20'-0"	STR				Bott. Transverse @ Ends	42
S502	5	2	18'-6"	STR				Bott, Transverse @ Ends	39	S517	5	2	18'-6"	STR				Bott, Transverse @ Ends	39
S503	5	2	17'-0"	STR				Bott. Transverse @ Ends	36	S518	5	2	17'-0"	STR				Bott, Transverse @ Ends	36
S504	5	2	15'-6"	STR				Bott, Transverse @ Ends	33	S519	5	2	15'-6"	STR				Bott. Transverse @ Ends	33
S505	5	2	13'-11"	STR				Bott, Transverse @ Ends	29	S520	5	2	13'-11"	STR				Bott, Transverse @ Ends	30
S506	5	2	12'-5"	STR				Bott, Transverse @ Ends	26	S521	5	2	12'-5"	STR				Bott, Transverse @ Ends	26
S507	5	2	10'-11" 9'-5"	STR		1		Bott, Transverse @ Ends	23	S522 S523	5 5	2	10'-11" 9'-5"	STR				Bott, Transverse @ Ends	23
S508		2	7'-11"	STR				Bott, Transverse @ Ends	17	S523	5	2	7'-11"	STR				Bott, Transverse @ Ends	17
S509 S510	5 5	2	6'-4"	STR		-		Bott. Transverse @ Ends Bott. Transverse @ Ends	14	S524 S525	5	2	6'-4"	STR				Bott, Transverse @ Ends Bott, Transverse @ Ends	14
S511	5	2	4'-10"	STR STR		+		Bott, Transverse @ Ends	11	S526	5	2	4'-10"	STR STR				Bott, Transverse @ Ends	11
S512	5	2	3'-4"	STR		+		Bott, Transverse @ Ends	7	S527	5	2	3'-4"					Bott, Transverse @ Ends	7
S513	5	2	1'-10"	STR		 		Bott, Transverse @ Ends	4	S528	5	2	1'-10"	STR STR				Bott. Transverse @ Ends	4
S514	5	132	35′-3″	STR		 		Top and Bott, Longitudinal	4854	S529	5	46	41'-10"	STR				Top & Bott. Longitudinal	2008
\$600	6	101	21'-8"	STR				Top Transverse	3287	S530	5	92	40'-6"	STR				Top & Bott. Longitudinal	3887
\$601	6	2	20'-0"	STR				Top Transverse @ Ends	61	S615	6	106	21'-8"	STR				Top Transverse	3450
\$602	6	2	18'-6"	STR				Top Transverse @ Ends	56	S616	6	2	20'-0"	STR				Top Transverse @ Ends	61
S603	6	2	17'-0"	STR		 		Top Transverse @ Ends	52	S617	6	2	18'-6"	STR				Top Transverse @ Ends	56
\$604	6	2	15′-6″	STR		1		Top Transverse @ Ends	47	S618	6	2	17'-0"	STR				Top Transverse @ Ends	52
S605	6	2	13'-11"	STR		1		Top Transverse @ Ends	42	S619	6	2	15'-6"	STR				Top Transverse @ Ends	47
S606	6	2	12'-5"	STR				Top Transverse @ Ends	38	S620	6	2	13'-11"	STR				Top Transverse @ Ends	42
S607	6	2	10'-11"	STR				Top Transverse @ Ends	33	S621	6	2	12′-5″	STR				Top Transverse @ Ends	38
S608	6	2	9'-5"	STR				Top Transverse @ Ends	29	S622	6	2	10'-11"	STR				Top Transverse @ Ends	33
S609	6	2	7'-11"	STR				Top Transverse @ Ends	24	S623	6	2	9′-5″	STR				Top Transverse @ Ends	29
S610	6	2	6'-4"	STR				Top Transverse @ Ends	20	S624	6	2	7′-11″	STR				Top Transverse @ Ends	24
S611	6	2	4'-10"	STR				Top Transverse @ Ends	15	S625	6	2	6'-4"	STR				Top Transverse @ Ends	20
S612	6	2	3'-4"	STR				Top Transverse @ Ends	11	S626	6	2	4'-10"	STR				Top Transverse @ Ends	15
S613	6	2	1'-10"	STR				Top Transverse @ Ends	6	S627	6	2	3'-4"	STR				Top Transverse @ Ends	11
S614	6	8	24'-6"	STR				Diagonals @ Ends	295	S628	6	2	1'-10"	STR				Top Transverse @ Ends	6
		חר	TNEOD	C I NIC	СТГ		ורטו			S629	6	8	24'-6"	STR				Diagonals @ Ends	295
		KE	INFUR	CING	SIE	EL SCI	HEDU	JLE – SLAB SPAN 4				RE	INFOR	CING	STEI	EL SCH	EDULE	: - SLAB SPAN 4	
	BAR	NO.	LENGTH						WE I GHT		BAR	NO.	LENGTH						WE I GHT
MARK	NO.	REQ'D.	(FT.)	TYPE	Α	B	С	D LOCATION	(LBS.)	MARK	NO.	REQ'D.		TYPE	Α	В	C D	LOCATION	(LBS.)
S302	3	104	5'-4"	6	n' -9"	2'-0"	ı' –6''	Curb	209	S544	5	2	1'-10"	STR				Bott, Transverse @ Ends	4
\$404	4	32	18'-2"		0 3			Curb	389	S545	5	92	18'-6"	STR				Top & Bott. Longitudinal	1776
\$405	4	16	19'-4"	_		 		Curb	207	S546	5	46	19'-6")				Top & Bott. Longitudinal	936
S499	4	128	3'-0"	STR		 		Slab Drains	257	S626	6	43	21'-8"	STR				Bott. Transverse	1400
S528	5	43	21'-8"	STR		1		Bott, Transverse	972	S631	6	2	20'-0"	STR				Top Transverse @ Ends	61
S532	5	2	20'-0"	STR				Bott. Transverse @ Ends	42	S632	6	2	18'-6"	STR				Top Transverse @ Ends	56
S533	5	2	18'-6"	STR		1		Bott. Transverse @ Ends	39	S633	6	2	17'-0"	STR				Top Transverse @ Ends	52
S534	5	2	17'-0"	STR				Bott. Transverse @ Ends	36	S634	6	2	15′-6″	STR				Top Transverse @ Ends	47
S535	5	2	15′-6″	STR				Bott. Transverse @ Ends	33	S635	6	2	13′-11″	STR				Top Transverse @ Ends	42
S536	5	2	13'-11"	STR				Bott. Transverse @ Ends	30	S636	6	2	12′-5″	STR				Top Transverse @ Ends	38
S537	5	2	12′-5″	STR				Bott. Transverse @ Ends	26	S637	6	2	10'-11"	STR				Top Transverse @ Ends	33
S538	5	2	10'-11"	STR				Bott. Transverse @ Ends	23	S638	6	2	9′-5″	STR				Top Transverse @ Ends	29
S539	5	2	9'-5"	STR				Bott, Transverse @ Ends	20	S639	6	2	7′-11″	STR				Top Transverse @ Ends	24
S540	5	2	7′-11″	STR			1	Bott. Transverse @ Ends	17	S640	6	2	6'-4"	STR				Top Transverse @ Ends	20
S541	5	2	6'-4"	STR			1	Bott. Transverse @ Ends	14	S641	6	2	4'-10"	STR				Top Transverse @ Ends	15
S542	5	2	4'-10"	STR				Bott, Transverse @ Ends	11	S642	6	2	3'-4"	STR				Top Transverse @ Ends	1 1
S543	5	2	3'-4"	STR				Bott, Transverse @ Ends	7	S643	6	2	1'-10"	STR				Top Transverse @ Ends	6
			<u>-</u>							S644	6	8	24'-6"	STR				Diagonals @ Ends	295

TOTAL REINFORCING STEEL SPAN 1 = 13,421 LBS.
TOTAL REINFORCING STEEL SPAN 2 AND 3 (EACH) = 15,057 LBS.
TOTAL REINFORCING STEEL SPAN 4 = 7,011 LBS.

SLAB REINFORCING MATERIALS

Detailed JUNE 2023 Checked JUNE 2023

Note: This drawing is not to scale, Follow dimensions. Sheet No.

DATE PREPARED 8/18/2023

DECK DRAIN DETAILS

WATERPROOFING & EXPANSION DEVICE DETAILS (1 OF 2)

Payment for all labor, materials and equipment necessary to furnish and install the expansion joints and waterproofing, complete in place, will be considered completely covered by the contract unit price for Expansion Device (Flat Plate) and Waterproofing, respectively. See Special Provisions.

8/18/2023 1 - 70MΩ DISTRICT SHEET NO BR S38 ST. CHARLES J6I0624 CONTRACT ID. PROJECT NO. A5801

Note:

WATERPROOFING & EXPANSION DEVICE DETAILS (2 OF 2)

Detailed JUNE 2023 Checked JUNE 2023

Note: This drawing is not to scale. Follow dimensions.

Sheet No. S39 of S48

8/18/2023

J6I0624

CONTRACT ID.

PROJECT NO.

A5801

MΩ

SHEET NO

S39

1 - 70

DISTRICT

- 2. ALUMINUM PIPE TO BE ASTM B429, ALLOY 6061-T6 AND BASE PLATE TO BE ASTM B209, ALLOY 6061-T6.
- 3. STAINLESS STEEL BOLTS, CAP SCREWS AND NUTS TO BE ASTM A276, TYPE 304, STAINLESS STEEL WASHERS TO BE ASTM A276, TYPE 302.
- 4. POST TO BE SET PERPENDICULAR TO TOP OF CURB AND RAILS SHALL BE PLACED PARALLEL TO THE GRADE OF THE BRIDGE.
- 5. CERTIFIED MILL REPORTS ARE REQUIRED FOR RAIL AND POST. SHOP INSPECTIONS ARE NOT REQUIRED.
- AFTER ANCHOR BOLT NUTS HAVE BEEN TIGHTENED, THREAD SHALL BE NICKED TO LOCK NUTS.
- CURVED RAIL USAGE: WHERE RAILS ARE TO BE USED ON BRIDGES ON HORIZONTAL AND/OR VERTICAL CURVATURE, THE CONTRACTOR MAY AT HIS OPTION HAVE THE REQUIRED CURVATURE IN THE RAIL FORMED IN THE SHOP OR IN THE FIELD. IN EITHER EVENT, THE RAIL SHALL CONFORM WITHOUT BUCKLING OR KINKING TO THE REQUIRED CURVATURE IN A UNIFORM MANNER ACCEPTABLE TO THE ENGINEER.
- ANCHOR PLATES SHALL BE STEEL CONFORMING TO ASTM A36.
- ANCHOR RODS SHALL CONFORM TO ASTM A276, TYPE 302 OR 304 STAINLESS STEEL AND THREADS SHALL BE ROLLED, NOT CUT.
- 10. UPPER ANCHOR ROD NUTS SHALL BE HEAVY HEX NUTS, PER ASTM A276 TYPE 302 OR 304 STAINLESS
- 11. LOWER ANCHOR ROD NUTS SHALL BE HEAVY STEEL HEX NUTS, PER ASTM A563.
- 12. THE CENTERLINE OF ANY SPLICE AND/OR EXPANSION JOINT IS TO BE LOCATED AT LEAST 2'-0" AWAY FROM CENTERLINE OF POST. EXPANSION AND/OR SPLICE JOINTS FOR EACH RAIL OF TWO RAILINGS ARE TO BE PLACED IN THE SAME LOCATION AND IN THE SAME PANEL.
- 13. WELDING SHALL BE IN ACCORDANCE WITH THE CURRENT AWS STRUCTURAL WELDING CODE FOR ALUMINUM.

HANDRAIL DETAILS

8/18/2023

ST. CHARLE

J6I0624

CONTRACT ID.

PROJECT NO.

A5801

MΩ

SHEET NO

S41

1 - 70

DISTRICT

BR

UNDERPASS BRIDGE DETAILS HANDRAIL

REF. NO.: SEC 2 - UP - 4 - SHT 7

DATE: JANUARY 1, 2022 DRAWING NO.: 13

		V 0		_	eg0		S	HEARS	TRENGT	H, tsf	
Surf	face Elevation: 622.0	Completion Date:	6/4/21	1000	28.8		Δ - UU/2	0	- QU/2	C	I-SV
	Datum: NAVD 88	140111119	1083730.43	8	FYSTS	vo.	0,5	1.0	1.5	2,0	2.5
	Datum:	Easting	716413.07	2	음등등	2		DPENE			TANCE
± ltt				GRAPHIC LOG	¥×≥	SAMPLES	STANDARD PENETRATION RESISTANCE N-VALUE (BLOWS PER FOOT) (ASTM D 1580)				
DEPTH IN FEET	DESCR	IPTION OF MAT	ERIAL	8	DRY UNIT WEIGHT (pc) SPT BLOW COUNTS (N60 CORE RECOVERY/RQD	27%	WATER CONTENT, %				
_=	V				SPE		PLI 10	20	30	40	50
	Asphalt - 2 inches			88 S.E.			******			993	
	Concrete - 9 inches			8888	4-4-5	SS1					
	Crushed rock - 4 ind	hes lay, trace gravel and fine		888	(11)		1117111	1133			
	Till. Diowit and sair d	ay, trace graver and line	saria	1888	3-6-8			: : : :		1:::	1111
- 5-				- 2000	(17)	SS2		222			
	Stiff, brown SILT sor	ne sand - (ML)		Ш	3-4-7	SS3	:::: *::	Н.	•	1111	
					1101		1111111			1	11111
				Ш		_	:::::::::	: ::::		1:::	3111
				Ш	95	ST4	v.	1111	•		
10-						-				****	63
				Ш			101111111	1111			
	some weathered rod	ei e			31-50/1"	SS5					
		MESTONE and clay		1	83%				115111		
	3-inch core loss	or to any		H	0%	NQ1		: : : :		1:::	
15-	Strong to very strong	gray, very finely crystal	line, thin to thick	1							
	chert nodules and or	thered to unweathered Li casional clay seams	MESTONE WITH	H	100%			: ::::		111	3
				二	78%	NQ2	11111111	1111	::::::	1111	
	Unconfined compres	sive strength 2,029 ksf		1			11111111	::::	::::::	1111	131111
				H				: [: : :	::::::	1:::	::::::
- 20-				\vdash							
				Ħ	100%	NQ3				1333	
	Unconfined compres	sive strength 1,956 ksf		\Box	85%	NQS				1:::	
	Oncommod compres	orre etteriger 1,000 tter		Ш						1:::	
- 25-				H							
				Н-				: : : :	::::::	1:::	:::::
	Unconfined compres	sive strength 2,474 ksf		F	100% 90%	NQ4		: :::	::::::	:::	::::::
				耳	9070				::::::	1:::	: : : : : :
									::::::	1:::	
- 30-				+							
				\mathbf{H}	100%			: ::::	::::::	111	
	Unconfined compres	sive strength 2,574 ksf		Ħ	88%	NQ5	::::::::	: : : :	::::::	1:::	
				Ħ					::::::	1:::	::::::
							:::::::::	: : : :	::::::	:::	: : : : :
35-				Н	100%						
				\vdash	86%	NQ6				1111	
		sive strength 2,764 ksf		\Box		-	10000000	1111	111111	111	::::::
	Boring terminated at	38 feet								111	::::::
							Drawn by: SK	Chan	ked by: SK	Ameliai	by: AWR
	GROUNDWATER DA	<u>ATA</u>	DRILLING	<u>DATA</u>			Date: 7/15/21		8/2/21	Date: 8	
		_	AUGER <u>3 3/4"</u>	HOLLO	N STEM			OF	TEOU	uni o	OV
Е	NCOUNTERED AT <u>7</u> F	EET ¥	WASHBORING FR	ом	FEET				JIEUH	NULU	GY
			TPD DRILLER L	AD LO	GGER			A Unive	sol Engineering	Sciences Co	mpany
							1 70	Camid	e leve		
			HAMMER TYP						r Improveroject J6		
			HAMMER EFFICIE						ille, Misso		
RF	MARKS: Rough drilli	na below 12 feet	a.m Car i Toll	_,,_,	- 17						
								OG OF	BORING	- B.9	
								.000	DOMINO	. 0-3	
							Pro	oject N	lo. J032	438.03	3

	606.5	Completion Date: 6/4/21			e80		SH	EAR STRENGTH	l, tsf
Surfa	ace Elevation: 620.5	Completion Date.		320	(pcf) (NBO) Rob		Δ - UU/2	O - QU/2	0 - SV
	Datum: NAVD 88	realing		8	FEST	02	0,5 1	0 1,5 2	2,0 2,5
	Datum: TURTE GO	Easting: 716444.46		2	858	H H	STANDARD	PENETRATION	RESISTANCE
-E				GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (NBC CORE RECOVERY/ROD	SAMPLES	▲ N-VA	(ASTM D 1586)	RFOOT)
DEPTH IN FEET	DESCR	IPTION OF MATERIAL		S.	RES		w.	ATER CONTENT	.%
ΩZ					몽토잉		PLI	$- \cdot -$	10 50
	Asphalt - 6 inches			recovs					
	Concrete - 8 inches			227	4-6-10	SS1			7.77.
	Crushed rock and cli	sy - 8 inches stiff, brown SILT interlayered with san		Ш	(19)	-			
	seams - (ML)	sun, provin Sic i inienayered with sai	u I	Ш	5-5-6	SS2	:::::::::::::::::::::::::::::::::::::::		******
- 5-				Ш	(13)	882			
			7	Ш				::::::::::	:::::::
			*	Ш	3-8-10 (22)	883	:::::: .	: • :::::::	1111111
				Ш	Trans.				* * * * * * * * * * * * * * * * * * * *
				Ш	1-4-4	SS4		H-W	1111111
10-				Ш	(10)	004	****	4. 4	*****
-				Ш			100000000000000000000000000000000000000		
-				Ш					
-				Ш					11111111
				Ш	1-4-3	SS5	:: x :::::		
15	Strong to very strong	, gray, very finely crystalline to anhar	itic.	1	(9)				
	thin to medium bedd	gray, very finely crystalline to aphar ed, slightly weathered to unweathere	1	1					
	LINES FORE With ch	ert nodules and occasional day sean	16	T.	100%	NQ1		::::::::::	
			1	1	69%		111111111	111111111	7.
				Н	f				1111111
20-									
				T;	1		111111111		1:::::::
\neg	Unconfined compres	sive strength 2,022 ksf			100% 84%	NQ2	:::::::::		:::::::
				ᆣ	0476		:::::::::		
0.5				\mp	Ī		::::::::::		1111111
25-				\pm					
				\pm	ł				
	Unconfined compres	sive strength 2,268 ksf		Η-	100% 87%	NQ3			
				Щ.	0,70				
30-				Τ,	ļ				
	Boring terminated at	30.3 feet							:::::::
									:::::::
									1111111
35-									
							::::::::::	:::::::::	
							010001010	100000000	0000000
$\overline{}$									
-								::::::::::	1111111
	GROUNDWATER DA	ATA DE	RILLING D	ATA			Drawn by: SK	Checked by: SK	App'vd. by: AV
		AUGER			M STEM		Date: 7/15/21	Date: 8/2/21	Date: 8/3/21
Compa	COUNTEDED AT A C		RING FRO				⊒ے ∕	GEOTECHI	INTUGY
EN	COUNTERED AT 6.5 F							A Universal Engineering	Iclenous Company
			LLER <u>LA</u>					A CONTRACTOR OF THE CONTRACTOR	
			IE 85 DRIL				I-70 C	orridor Improve	ments
		HAM	IMER TYPE	Auto	2		Mo	DOT Project J68	0624
		HAMMEI	REFFICIE	VCY_	<u>73</u> %		w	lentzville, Misso	uni
REN	MARKS:						212		
							L	G OF BORING:	B-10
								ect No. J032	

0,5 1,0 1,5 2,0 2,5

STANDARD PENETRATION RESISTANCE
A N-VALUE (BLCWS PER FOOT)
(ASTM 0 1596) DESCRIPTION OF MATERIAL PL | WATER CONTENT, % | 10 | 20 | 30 | 40 | 50 | 11L Stiff, tan, LEAN CLAY to FAT CLAY, some sand and gravel (CL-CH) 3-5-5 (15) SS1 3-5-5 (15) Stiff, brown, LEAN CLAY, trace gravel - CL (25) SS3 4-7-10 SS4 Very stiff, tan, FAT CLAY and gravel - CH 100% 73% NQ2 Unconfined compressive strength 1,122 ksf 100% 78% NQ3 100% 97% NQ4 100% 90% NQ5 100% NG6 Boring terminated at 39 feet GROUNDWATER DATA DRILLING DATA X FREE WATER NOT ENCOUNTERED DURING DRILLING AUGER 3 3/4" HOLLOW STEM GEOTECHNOLOGY WASHBORING FROM ___ FEET TPD DRILLER ALY LOGGER CME 85 DRILL RIG i-70 Corridor Improvements MoDOT Project J6l0624 Wentzville, Missouri HAMMER TYPE Auto HAMMER EFFICIENCY 92 % REMARKS: LOG OF BORING: B-11 Project No. J032438.03

Completion Date: <u>5/24/21</u>
Northing: 1083715.42
Easting: 716344.56

Surface Elevation: 621.6

Datum: NAVD 88

For location of borings, see Sheet No. S6.

BORING LOGS (1 OF 7)

Sheet No. S42 of S48

8/18/2023

ST. CHARLES

JOB NO.

J6I0624

CONTRACT ID. PROJECT NO.

A5801

STATE MΩ

SHEET NO.

S42

ROUTE I -70

DISTRICT

BR

∆ - UU/2 O - QU/2 □ - SV

Surfs	ace Elevation: 627.9	Completion Date: 5/25/21		(pcf) (N60) RQD			EAR STRENGTH	
		Northing: 1083604.78	90	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N6C CORE RECOVERY/RQD	W	∆ - UU/2 0.5 1	O - QU/2 .0 1.5 2	□ - SV 2.0 2.5
	Datum: NAVD 88	Easting: 716255.13	GRAPHIC LOG	WEIG	SAMPLES	STANDARD	PENETRATION	RESISTANCE
프뉴			RAPI	NEC	SAN	▲ N-V/	(ASTM D 1586)	R F001)
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	9	T BLO		PLI W	-, % ────────────────────────────────────	
	Tanasii 40 inaha		35.3	□ % O		10 2	20 30 4	10 50
	Top soil - 12 inches Soft to very soft, brow	wn, LEAN CLAY-(CL)	7777	1-2-2	SS1			
				(5)	331			
				0-0-1	SS2	A	: · · · · · · · · · · · · · · · · · · ·	
_ 5-	Stiff, brown and gray	, FAT CLAY - (CH)				:::::::::		62
		S		3-4-6 (13)	SS3		:0:::::	>>
	Medium dense, brow (SC-SM)	n, silty, clayey SAND, trace gravel -		3-6-8				
— 10 <i>-</i>	(30-314)			(18)	SS4			
		200720						
	Very stiff to stiff, brow	vn, FAT CLAY, trace sand and gravel - CH						
				5-7-10 (21)	SS5			
— 15 <i>—</i>						:::::::::		
				3-6-8	000			
— 20-				(18)	SS6			
	Strong to very strong	g, tan and gray to gray, very finely	"""			1000000000000	1200000011	
		ic, thin to massive bedded, slightly hered LIMESTONE with chert nodules and		100% 72%	NQ1			
		sive strength 1,328 ksf		1270				
— 25 —								
				<u>100%</u>	NQ2			
	Unconfined compres	sive strength 2,628 ksf		82%				
— 30 —								
				4000/				
				100% 82%	NQ3			
— 35 —	Unconfined compres	sive strength 1,640 ksf						
								:::::::::::::::::::::::::::::::::::::::
				100% 93%	NQ4			:::::::::
				30%				
		ssive strength 2,161 ksf	NC DATA	1	_	Drawn by: SK	Checked by: SK	App'vd. by: AWR
	GROUNDWATER DA		NG DATA	N OTES		Date: 7/15/21	Date: 8/2/21	Date: 8/3/21
ENC	X FREE WATER NO OUNTERED DURING D					ظے /	GEOTECHN	IOLOGY
		NJG DRILLER					A Universal Engineering S	Sciences Company
		<u>CME 550></u>	<u>(</u> DRILL RI	G			Corridor Improve	
			TYPE Auto				DOT Project J6K lentzville, Misso	
REN	MARKS:	HAMMER EFF	TOTENCY_	<u>/၁</u> %				
	-					LC	OG OF BORING:	B-12
REN						_		400.00
ı						Proj	ject No. J0324	438.03

Note: This drawing is not to scale. Follow dimensions.

CRIPTION OF I	MATERIAL gray, very finely e bedded, slightly NE with chert nodules and	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) \$60	SAMPLES SAMPLES	STANDARD N-V/	PENETRATION ALUE (BLOWS PE (ASTM D 1586)	ER FOOT)
strong, tan and gray to of the characteristics thin to massive threathered LIMESTON seams (continued) inpressive strength 1,73	gray, very finely e bedded, slightly NE with chert nodules and	GRAF	100% 93%	NQ5	PL W	ATER CONTEN	T, %
hanitic, thin to massive tweathered LIMESTON seams (continued) npressive strength 1,73	e bedded, slightly NE with chert nodules and		100% 93%		PL	•	L
hanitic, thin to massive tweathered LIMESTON seams (continued) npressive strength 1,73	e bedded, slightly NE with chert nodules and		100% 93%				
ed at 46 feet			100%/83%	NQ6			
ed at 46 feet				19			
				8			
R DATA	DRILLING	DATA			Drawn by: SK Date: 7/15/21	Checked by: SK Date: 8/2/21	App'vd. by: AWF Date: 8/3/21
	WASHBORING FF <u>NJG</u> DRILLER	ROM EER_LC	FEET GGER		G	GEOTECH	
	HAMMER TY	PE <u>Auto</u>	<u>_</u>		Mo V	DOT Project J6 Ventzville, Misso	10624 Duri
					LC	OG OF BORING:	B-12
ΕI	ER DATA ER NOT BING DRILLING	ER NOTAUGER 3.3/4" RING DRILLING WASHBORING FF NJG DRILLER _ CME 550X D HAMMER TY	ER NOTAUGER _3 3/4" HOLLON RING DRILLING WASHBORING FROM NJG_ DRILLER _EER_LO CME_550X_ DRILL_RION HAMMER TYPE _Auto	ER NOT AUGER 3.3/4" HOLLOW STEM	ER NOTAUGER <u>3 3/4"</u> HOLLOW STEM WASHBORING FROM FEET NJG DRILLER <u>EER</u> LOGGER CME 550X DRILL RIG HAMMER TYPE <u>Auto</u>	AUGER 3 3/4" HOLLOW STEM WASHBORING FROM FEET NJG DRILLER EER LOGGER CME 550X DRILL RIG HAMMER TYPE _Auto HAMMER EFFICIENCY 75 %	ER DATA DRILLING DATA Date: 8/2/21 Date: 7/15/21 Date: 8/2/21 Date: 8/2/21 Date: 8/2/21 Date: 7/15/21 Date: 8/2/21 Date: 7/15/21 Date: 8/2/21 Date: 7/15/21 Date: 8/2/21 GEOTECH A Universal Engineering L-70 Corridor Improve MODOT Project Joi Monotonillo Misson

For location of borings, see Sheet No. S6.

BORING LOGS (2 OF 7)

Detailed JUNE 2023 Checked JUNE 2023

Sheet No. S43 of S48

DATE PREPARED

8/18/2023

ROUTE STATE

I - 70 MO

DISTRICT SHEET NO.

BR \$43

COUNTY
ST. CHARLES

JOB NO.

J610624

CONTRACT ID.

PROJECT NO.

	Datum: NAVD 88	Completion Date: Northing: Easting:	7/21/21 1083686.65 716555.23	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES		- UU/2 0 _i 5	ARD I		- SV 2,0 2,5 NRESISTANCE
DEPTH IN FEET	DESCR	IPTION OF MAT	ERIAL	GRA	DRY UNIT PT BLOW CORE RE	S/S	PL F	10	O'ANTERIO	TER CONTEN	
	Fill: brown, lean clay			×××	on						
				\bowtie	1-1-2	SS1	A :	: : : :	• •	•	
				\bowtie	(4)			: : : :	::		
				\bowtie	1-2-2	SS2	A	::::	::	•	
- 5-	0	547.01.07.00		\bowtie	(5)						
	Stiff to hard, brown a	and gray, FAT CLAY - (C	H)		444	ста	155		<u>.</u> .		
					114	ST3			::	1111111	i istrati
_	some sand				3-6-8	SS4	:::		::	:::::::	
10-	Some same				(18)						
— 10— — 15— — 20— — 25— — 30—								: : : :	::		
									::		
<u> </u>	some weathered roc	k			13-18-21	SS5	: : :				
15-					(49)						
									::		
	Dense to loose, brow	vn, SILTY SAND - SM					: : :		::		
					4-16-28	SS6	:::	: : : :	::	:::::::	: : : : : : : : :
_ 20-					(55)	330					
5							: : :	: : : :	::		
ا ق							:::	: : : :	11		
					4-4-5				::		
_ 25-					(11)	SS7		A			
								: : : :	::		
			-				:::	::::	::	::::::::	
			¥		4-4-50/1"	Tagasa et al			33		
30-	53 percent passing #	#200 sieve			()	SS8					
	Medium strong to str	ong, gray, finely crystalli	ine slightly				: : :	: : : :	::		
	weathered LIMESTO		ine, anginay	Ħ	100%	NOA			::		
					65%	NQ1	:::	: : : :	11		III kabapatan kan
35-							555		725		
35-				岸			:::	: : : :	::		
≥ N N				岀	100% 75%	NQ2	: : :	: : : :	::		
5 I				片	1555464		: : :	: : : :	::		
8				岀			111		-:		
G.S.	GROUNDWATER DA	<u>ATA</u>	DRILLING D	<u>ATA</u>				n by: \$		Checked by: SK Date: 8/2/21	App'vd. by: AWR Date: 8/3/21
			AUGER _3 3/4"_ H	OLLO'	N STEM			1			100000000000000000000000000000000000000
EN	NCOUNTERED AT 28 F	FEET ♀	WASHBORING FRO					(GEOTECH	NOLOGY
03 B			TPD DRILLER LA							A Universal Engineerin	Sciences Company
JU32438.U3 BORING LOGS.			<u>CME 550X</u> DR					j.	70 C	orridor Improv	ements
-			HAMMER TYP	E <u>Auto</u>	<u>)</u>				MoD	OT Project J6	10624
			HAMMER EFFICIE	NCY _	<u>75</u> %				W	entzville, Miss	ouri
REM	WARKS: Rough drilli	ng at 13 feet.							LO	G OF BORING	: B-13
2							-		Proje	ect No. J032	2420.02

	007.0		7/04/04		ေ စ္တိဂ		SHI	EAR STRENGTH	l, tsf			
Surfac	e Elevation: 637.2	Completion Date: Northing:	7/21/21 1083686.65	(2)	S (NG)	LES	∆ - UU/2	○ - QU/2	□ - SV			
Da	atum: NAVD 88	Easting:) i	IGH TRY TRY				.0 2.5			
				GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	STANDARD PENETRATION RESISTANCE N-VALUE (BLOWS PER FOOT) (ASTM D 1586)					
DEPTH IN FEET	DESCR	RIPTION OF MA	TERIAL	9	SY UN BLO		w	ATER CONTENT	,%			
□ ≧					RP S		PL 10 2	20 30 4	10 50 L			
	Medium strong to st weathered LIMESTO	rong, gray, finely crysta DNE with clay seams (alline, slightly (continued)		100% 87%	NQ3						
- 45-												
					<u>100%</u>							
					83%	NQ4						
- 50-												
					100% 85%	NQ5						
- 55-					<u>100%</u>	NQ6		:::::::::::::::::::::::::::::::::::::::				
	Boring terminated at	t 56 feet			100%							
- 60-												
- 65-												
- 70 <i>-</i>												
- 75 <i>-</i>								:::::::::::::::::::::::::::::::::::::::				
9	GROUNDWATER D	<u>ATA</u>	<u>DRILLING</u> I	<u>DATA</u>			Drawn by: SK Date: 7/22/21	Checked by: SK Date: 8/2/21	App'vd. by: AWF Date: 8/3/21			
ENIO	OUNTEDED AT CC.		AUGER <u>3 3/4"</u> F					GEOTECHN	ININGY			
ENC	OUNTERED AT <u>28</u> F	-CC *	WASHBORING FRI TPD DRILLER <u>L</u>					A Universal Engineering S	The state of the s			
			<u>CME 550X</u> DF HAMMER TYF HAMMER EFFICIE	PE <u>Auto</u>	<u>)</u>		Mol	corridor Improve DOT Project J610 Jentzville, Misso	624			
REMA	ARKS: Rough drilli	ing at 13 feet.	i is annoted V El 1 TOTE	_,,0,_	<u> </u>			CONTINUATION OG OF BORING:				
							Drai	ect No. J0324	138 03			
							110)	JUL 140. 0032.				

BORING LOGS (3 OF 7)

Detailed JUNE 2023 Checked JUNE 2023

Note: This drawing is not to scale. Follow dimensions.

Sheet No. S44 of S48

DATE PREPARED

8/18/2023

ROUTE STATE

I - 70 MO

DISTRICT SHEET NO.

BR S 44

COUNTY
ST. CHARLES

JOB NO.

J6I0624

CONTRACT ID.

PROJECT NO.

	222.2	F100(04		£®်Ω		SH	EAR STRENGTH	l, tsf
Surfac	ce Elevation: 638.6	Completion Date: <u>5/26/21</u> Northing: 1083780.69	(n)	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD		∆ - UU/2	○ - QU/2	□ - SV
Da	atum: NAVD 88	Easting: 716467.79	ľ	E N	ES	0 _, 5 1	1.0 1.5 2	2,0 2,5
			GRAPHIC LOG	SOU SOV	SAMPLES	STANDARD N-V/	PENETRATION ALUE (BLOWS PE (ASTM D 1586)	RESISTANCE R FOOT)
三点			RAF.	N SWIT	SA		(ASTM D 1586)	
DEPTH IN FEET	DESCR	IPTION OF MATERIAL		T BL ORE		PLI W	ATER CONTENT	⁻, % ────────────────────────────────────
	T :: 40: 1		111.5	080		10 :	20 30 4	10 50
	Top soil - 12 inches	vn and gray, FAT CLAY - (CH)	777	1-2-3	02020			
		(0.7)		(6)	SS1	: 4:::::::		
				1-1-3	000			8
- 5-				(5)	SS2	.4		· · · · · · · · · >
				3-7-9	000			
				(20)	SS3	:::::::::::::::::::::::::::::::::::::::	:::::::::	
	Stiff, brown, LEAN C	LAY - (CL)		2-5-7	SS4			
10-				(15)	334			
	Limestone ledge - 4							
15	Brown, LEAN CLAY	- (CL)						
						<u> </u>		
20-								
							 	
25 —								
30-								
30	Otrono de como etrono							
	crystalline to aphanit	i, tan and gray to gray, very finely ic, thin to thick bedded, slightly weathered						
	to unweathered LIME clay seams	ESTONE with occasional chert nodules and		100%	NQ1			
35-	~ Unconfined compres	sive strength 1,798 ksf		54%		<u> </u>		
				100% 77%	NQ2	::::::::::		::::::::
				77.70			1111111111	
<u>c</u>	GROUNDWATER DA	ATA DRILLIN	G DATA			Drawn by: SK Date: 7/15/21	Checked by: SK Date: 8/2/21	App'vd. by: AWR Date: 8/3/21
	X FREE WATER NO	DT AUGER <u>3 3/4</u>	<u>'"</u> HOLLO\	N STEM		4		
ENCO	UNTERED DURING D						GEOTECHN	IULUGY
		NJG DRILLER					A Universal Engineering S	Sciences Company
		<u>CME 550X</u>	DRILL RIC	G		1-70 0	Corridor Improve	ments
		HAMMER -	TYPE Auto	<u>.</u>		Mo	DOT Project J610	0624
		HAMMER EFFI	CIENCY _7	<u>'5</u> %		V	lentzville, Misso	urı
REMA	ARKS: Commence	d coring at auger refusal at 13 feet.				LC	OG OF BORING:	B-14
						Dro	ject No. J032	400.00

Note: This drawing is not to scale. Follow dimensions.

GRAPHIC LOG	DRY UNIT WEIGHT (pc) SPT BLOW COUNTS (N60) 100% 83%	NG3	PL I	ALUE (BLOWS PER (ASTM D 1586) ATER CONTENT 20 30 4	
	100% 75%				
	83% 100%	NQ4			
	100%				
	92%	NQ5			
<u>DATA</u>			Drawn by: SK Date: 7/15/21	Checked by: SK Date: 8/2/21	App'vd. by: AWI Date: 8/3/21
OM EER_LC RILL RI PE_Auto	FEET OGGER G		Mol W	DOT Project J610 lentzville, Misson	ments 0624 uri
	HOLLO' OM EER_LC RILL RI PE_Auto	DATA HOLLOW STEM OM FEET EER LOGGER RILL RIG PE Auto ENCY 75 %	HOLLOW STEM OM FEET EER_ LOGGER RILL RIG PE_Auto_	DATA Drawn by, SK Date: 7/15/21 HOLLOW STEM OM FEET EER LOGGER RILL RIG PE Auto ENCY 75 % Drawn by, SK Date: 7/15/21 Drawn by, SK Date: 7/15/21	Drawn by. SK Checked by. SK Date: 7/15/21 Date: 8/2/21 HOLLOW STEM OM FEET EER LOGGER RILL RIG PE Auto Drawn by. SK Checked by. SK Date: 8/2/21 GEOTECHN A Universal Engineering SI I-70 Corridor Improve MoDOT rigide. SI MO

For location of borings, see Sheet No. S6.

BORING LOGS (4 OF 7)

Detailed JUNE 2023 Checked JUNE 2023

Sheet No. S45 of S48

DATE PREPARED

8/18/2023

ROUTE STATE

I - 70 MO

DISTRICT SHEET NO.

BR \$45

COUNTY
ST. CHARLES

JOB NO.

J6I0624

CONTRACT ID.

PROJECT NO.

	face Elevation: 631.5 Datum: NAVD 88	Completion Date: 5/27/21 Northing: 1083689.44 Easting: 716156.83	0 LOG	IGHT (pcf) UNTS (N60) /ERY/RQD	ES	Δ - UU/2 0 _i 5 1		□ - SV 2.0 2.5
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GRAPHIC LOG	DRY UNIT WEIGHT (P SPT BLOW COUNTS (N CORE RECOVERY/R)	SAMPLES	▲ N-VA	PENETRATION LUE (BLOWS PE (ASTM D 1536) ATER CONTENT 0 30 4	R FOOT)
	Top soil - 30 inches	AN CLAY trace sand - (CL)	12 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0-1-1 (3)	SS1	.		
- 5-	-			0-0-0 (0)	SS2			
	Medium stiff to very : gravel - CH	stiff, brown, FAT CLAY, trace sand and		1-3-4 (9)	SS3			
- 10 - 15 - 15 - 25 - 25 - 25 - 25 - 25 - 25				115	ST4		Δ	
— 15—				3-8-10 (23)	SS5			
				3-5-6	SS6			
_ 20-				(14)				
25				2-3-6 (11)	SS7			
	aphanitic, thin to thic unweathered LIMES	ry strong, gray, very finely crystalline to sk bedded, slightly weathered to TONE with chert nodules and clay seams ssive strength 926 ksf		100% 90%	NQ1			
	Unconfined compres	ssive strength 2,711 ksf		100% 92%	NQ2			
- 35 - 35 - 35 - 35 - 35 - 35 - 35 - 35	1-inch core loss	Sive Storigan 2,7 11 Mar		98% 65%	NQ3			
3	GROUNDWATER DA	ATA DRILLING	DATA			Drawn by: SK Date: 7/15/21	Checked by: SK Date: 8/2/21	App'vd. by: AWR Date: 8/3/21
DOSC458:US BOKING FOGS.	X FREE WATER NO	ORILLING WASHBORING FI	ROM EER_LC	FEET GGER		6	GEOTECHN A Universal Engineering S	OLOGY
	MARKS:	<u>CME 550X</u> [HAMMER TY HAMMER EFFIC	PE <u>Auto</u>	<u>)</u>		Mol	orridor Improve OOT Project J6K entzville, Misso	0624
REI REI						ГО	G OF BORING:	B-15
						Proje	ect No. J032	438.03

	201 =	E/0E/04		£80		SHI	EAR STRENGTH	H, tsf
Surf	face Elevation: 631.5	Completion Date: <u>5/27/21</u> Northing: <u>1083689.44</u>	(1)	3 S S		∆ - UU/2	O - QU/2	🗆 - SV
	Datum: NAVD 88	Easting: 716156.83	loc	F STA	S			2,0 2,5
			€	SOL	SAMPLES	STANDARD	PENETRATION LUE (BLOWS PE (ASTM D 1586)	RESISTANCE R FOOT)
三世			GRAPHICLOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAI		(ASTM D 1586)	
DEPTH IN FEET	DESCR	IPTION OF MATERIAL		T.BL ORE		PL I	ATER CONTENT	Γ, % ————————————————————————————————————
				<u> </u>		10 2	20 30 4	40 50 1 1 1
	aphanitic, thin to thic	ry strong, gray, very finely crystalline to k bedded, slightly weathered to						
	unweathered LIMES (continued)	TONE with chert nodules and clay sean	ns 🛱	100% 78%	NQ4			
		sive strength 1,407 ksf						
45								
— 45 —	Unconfined compres	sive strength 1,660 ksf						
	1			100% 93%	NQ5			
	-		H	93%				Description and the second
	-							
— 50 –	į			100% 100%	NQ6			
	· ·	sive strength 2,240 ksf		100%	1.00			
	Boring terminated at	52 feet						
	-							::::::::
— 55 –	<u> </u>							
	-							11111111
	-							
— 60-								
	-						111111111	1::::::::
	-							
	-							
	-						:::::::::::::::::::::::::::::::::::::::	
— 65 –						111111111	::::::::::	The Control of
						:::::::::	::::::::::	::::::::
	-					:::::::::::::::::::::::::::::::::::::::		
	-							
— 70 –	-							
						::::::::		
								11111111
	-							
						:::::::::	:::::::::	
						Inb. or	Observed by OV	Australia Arres
	GROUNDWATER DA	<u>ATA</u> <u>DRII</u>	LING DATA			Drawn by: SK Date: 7/15/21	Checked by: SK Date: 8/2/21	App'vd. by: AWR Date: 8/3/21
	X FREE WATER NO	DT AUGER _:	3 3/4" HOLLC	W STEM				
ENG	COUNTERED DURING D	PRILLING WASHBORI	ING FROM	FEET			GEOTECHI	NULUGY
		<u>NJG</u> DRILL	ER <u>EER</u> LO	OGGER			A Universal Engineering	Sciences Company
		<u>CME 5</u>	50X DRILL R	IG		1-70 C	orridor Improve	ements
		HAMM	ER TYPE <u>Aut</u>	<u>o</u>		Mol	DOT Project J6l	0624
		HAMMER	EFFICIENCY_	<u>75</u> %		W	lentzville, Misso	uri
		T D WINDLIN						
REI	MARKS:	T D AVIOLETY				,	CONTINUENTION	OF
REI	MARKS:	T // WINIELY					CONTINUATION OG OF BORING:	
REI	MARKS:	() William						

BORING LOGS (5 OF 7)

Detailed JUNE 2023 Checked JUNE 2023

Note: This drawing is not to scale. Follow dimensions. Sheet No. S46 of S48 DATE PREPARED

8/18/2023

ROUTE STATE

I - 70 MO

DISTRICT SHEET NO.

BR S46

COUNTY
ST. CHARLES

JOB NO.

J6I0624

CONTRACT ID.

PROJECT NO.

Northing: 1083	(CL)	(20) 10-5-8 (20) 10-5-8 (21) 1	SS1 SS2 SS3 SS4 SS54	STANDARD N-VA	PENETRATION LUE (BLOWS PEI (ASTM D 1536)	R FOOT)
Description of Material Top soil - 12 inches	(CL)	3-9-9 (28) 10-5-8 (20) 4-5-9 (21) 6-5-4 (14)	SS1 SS2 SS3 SS4	STANDARD N-VA	PENETRATION LUE (BLOWS PEI (ASTM D 1536)	RESISTANCE R FOOT)
Top soil - 12 inches Stiff, brown, LEAN CLAY, trace sand and gravel - 1 Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and day seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	(CL)	3-9-9 (28) 10-5-8 (20) 4-5-9 (21) 6-5-4 (14)	SS1 SS2 SS3 SS4	A N-VA	ATER CONTENT	;,%
Top soil - 12 inches Stiff, brown, LEAN CLAY, trace sand and gravel - 1 Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	(CL)	3-9-9 (28) 10-5-8 (20) 4-5-9 (21) 6-5-4 (14)	SS1 SS2 SS3 SS4	PL I W	ATER CONTENT	·,%
Top soil - 12 inches Stiff, brown, LEAN CLAY, trace sand and gravel - 1 Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	(CL)	3-9-9 (28) 10-5-8 (20) 4-5-9 (21) 6-5-4 (14)	SS2 SS3 SS4	PL I	•	·
Stiff, brown, LEAN CLAY, trace sand and gravel - 1 Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	(CL)	3-9-9 (28) 10-5-8 (20) 4-5-9 (21) 6-5-4 (14)	SS2 SS3 SS4	10 2	30 4	H
Stiff, brown, LEAN CLAY, trace sand and gravel - 1 Stiff, brown, FAT CLAY - CH Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	(CL)	3-9-9 (28) 10-5-8 (20) 4-5-9 (21) 6-5-4 (14)	SS2 SS3 SS4	1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		H
Stiff, brown, FAT CLAY - CH Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	10-5-8 (20) 4-5-9 (21) 6-5-4 (14)	SS2 SS3 SS4			H:
Stiff, brown, FAT CLAY - CH Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	(20) 4-5-9 (21) 6-5-4 (14) 3-5-7 (18)	SS3	A + •		H
Stiff, brown, FAT CLAY - CH Stiff, brown, FAT CLAY - CH Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	4-5-9 (21) 6-5-4 (14) 3-5-7 (18)	SS3			
Weathered LIMESTONE Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	(21) 6-5-4 (14) 3-5-7 (18)	SS4	1		
Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	6-5-4 (14) 3-5-7 (18)	SS4	4 8		
Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	3-5-7 (18)				
Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	3-5-7 (18)				
Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	thin to	(18)	SS5			
Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	, thin to	(18)	SS5			
Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	, thin to	(18)	SS5			
Weathered LIMESTONE Strong, tan and gray to gray, very finely crystalline medium bedded, slightly weathered to unweathere LIMESTONE with chert nodules and clay seams Unconfined compressive strength 1,519 ksf Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf	, thin to					
Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf Unconfined compressive strength 2,052 ksf	thin to	100%/33%				
Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf Unconfined compressive strength 2,052 ksf	, thin to	100%/33%				
Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf Unconfined compressive strength 2,052 ksf	, thin to	100%/33%				
Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf Unconfined compressive strength 2,052 ksf	xd —		NQ1			
Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf Unconfined compressive strength 2,052 ksf		1				
Unconfined compressive strength 1,952 ksf Unconfined compressive strength 2,052 ksf Unconfined compressive strength 2,052 ksf		<u>100%</u>				
Unconfined compressive strength 1,952 ksf		70%	NQ2			
Unconfined compressive strength 1,952 ksf 30 Unconfined compressive strength 2,052 ksf		‡				: : : : : : : : :
Unconfined compressive strength 2,052 ksf						
Unconfined compressive strength 2,052 ksf		100%	NQ3	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::
Unconfined compressive strength 2,052 ksf		82%	INQS			
Unconfined compressive strength 2,052 ksf						
Unconfined compressive strength 2,052 ksf		‡				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>100%</u>	NQ4			
		82%	110			
<u> </u>						
Unconfined compressive strength 2,099 ksf		100%	NQ5	:::::::::		
50		47.70				
J 1		<u> </u>		Drawn by: SK	Checked by: SK	App'vd. by: AWR
GROUNDWATER DATA	DRILLING DATA			Date: 7/15/21	Date: 8/2/21	Date: 8/3/21
X FREE WATER NOT A	UGER <u>3 3/4"</u> HOLLO	W STEM			OFOTFOLIA	IOI OOV
문 ENCOUNTERED DURING DRILLING WA	ASHBORING FROM	FEET		\subset	GEOTECHN	IOLOGY
<u>TP</u>	<u>D</u> DRILLER <u>ALY</u> LC				A Universal Engineering S	sciences Company
772	CME 55LC DRILL RI				orridor Improve	
	HAMMER TYPE_Auto				DOT Project J6l0 entzville, Misso	
ਸ. ਫੁ ■ REMARKS: No recovery in Sample SS4.		<u>92</u> %			,	
GROUNDWATER DATA X FREE WATER NOT ARENCOUNTERED DURING DRILLING TP REMARKS: No recovery in Sample SS4. Rough drilling below 17 feet.	AMMER EFFICIENCY _			1.0	G OF BORING:	B-16
DOT (LC		

	ace Elevation: 627.0	Completion Date:	5/25/21		l ダラの						
		Northing:	1083646.88	ഗ	3 (S)		∆ - UU/2	O - QU	/2	□ - SV	
	Datum: NAVD 88	Easting:	716341.13	O C	E E	Si	0.5	1,0 1,5	2,0		
- L				GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	STANDARD PENETRATION RESISTANCE N-VALUE (BLOWS PER FOOT) (ASTM D 1586)				
DEPTH IN FEET	DESCR	IPTION OF MA	TERIAL	GR	Y UN BLOV RE R	S		WATER CON	TENT, 9	/ ₆	
					SPT SPT CO		PL 10	20 30	40	———— LI 50 LI	
		to gray, very finely cry						: ::::::	:::		
	LIMESTONE with ch	nert nodules and clay s	seams (continued)	\perp	100% 94%	NQ6					
			.e	ш	0.,,0				: : :		
— 45 —	Boring terminated at	ssive strength 1,660 ks : 44 feet	31					: ::::::	:::		
45								: : : : : : :			
									: : :		
— 50 –						- 8					
							151 101 10				
							:::::::	: ::::::	:::		
— 55 —											
									: : :		
								: ::::::			
							:::::::	: ::::::	:::		
— 60 —								: ::::::			
- 60-							11111111	: ::::::	111		
							::::::::	: ::::::			
								: : : : : : :			
— 65 <i>-</i>						8					
							:::::::	: ::::::	:::		
— 70 —									2.23		
								:	:::		
							:::::::	: ::::::	: : :		
— 75 —											
							11111111	: : : : : : :	:::		
							::::::::	: ::::::	:::		
								2	7.50		
	GROUNDWATER DA	<u>ATA</u>	DRILLING	<u>DATA</u>			Drawn by: SK Date: 7/15/21	Checked by Date: 8/2/2		App'vd. by: AWF Date: 8/3/21	
	X FREE WATER NO		AUGER <u>3 3/4"</u>	HOLLO	N STEM			OFOTE	OUNI	11001	
ENC	COUNTERED DURING D	DRILLING	WASHBORING FR	OM	FEET			GEOTE			
			TPD DRILLER _/	ALY LO	GGER			A Universal Engi	neering Scie	nces Company	
			<u>CME 55LC</u> D				1-70	Corridor Imp	rovem	ents	
			HAMMER TYI	⊃E <u>Auto</u>	<u>)</u>		I N	IoDOT Projec	t J61062	24	
			HAMMER EFFICI	ENCY <u>(</u>	<u>92</u> %			Wentzville, N	ussour		
REI Rou	MARKS: No recovery ugh drilling below 17 f	y in Sample SS4. feet.						CONTINUA LOG OF BOR			
1							Dr	oject No. J	103243	8 03	

BORING LOGS (6 OF 7)

DATE PREPARED

8/18/2023

ROUTE STATE

I - 70 MO

DISTRICT SHEET NO.

BR S 47

COUNTY
ST. CHARLES

JOB NO.
J610624

CONTRACT ID.

PROJECT NO.

				<u> </u>		SHI	EAR STRENGTH	I, tsf		
Surfa	ce Elevation: 643.0	Completion Date: 7/1/21		DRY UNIT WEIGHT (pd) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD		∆ - UU/2	○ - QU/2	□ - SV		
I .	Datum: NAVD 88	Northing: 1083626.41 Fasting: 716135.30	00	HES NTS NTS	SS	0 _. 5 1	,0 1 _, 5 2	2,0 2,5		
	Jatam	Easting 716135.30	_	N N N N N N N N N N N N N N N N N N N	SAMPLES	STANDARD	PENETRATION	RESISTANCE		
ᆂᇤ			GRAPHIC LOG	₩	SAN	▲ N-VA	LUE (BLOWS PE (ASTM D 1586)	K F001)		
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	9	P. S.	7.000	W	ATER CONTENT	Γ, %		
Ω≧				RFS		PL	•	40 50 LL		
	Fill: brown and gray,	fat clay, some to trace asphalt	***							
			***	2-1-1	SS1	A::::::::				

_ 5-			***	0-0-1 (2)	SS2	M :::::::::	:::::			
			***	1-1-2			1111111111			
			***	(5)	SS3	A				
			***	0-1-1						
— 10 —			***	(3)	SS4	A				
- 10- - 15- - 20- - 25- - 30-	Brown, LEAN CLAY,	trace sand - (CL)	11/1/							
				99	ST5	::::::::	• • • • • • • • • • • • • • • • • • • •	<u> </u>		
— 15 —						*******	*******			
					ST6					
	Stiff to very stiff, brov	vn, FAT CLAY, trace gravel - CH				111111111		:::::::::::::::::::::::::::::::::::::::		
				5-7-7 (21)	SS7	iiiiiii.				
_ 20 _				(2.1)		:::::::::	*******			
— 25 —				3-4-6 (15)	SS8	:::: \ :::: ♦				
						1111111111	111111111111111111111111111111111111111			
				4-7-7						
— 30 —				(21)	SS9		*********			
				10-11-10	SS10	::::::::::				
— 35—				(32)	0010	*******				
	Weathered LIMEST	ONE				111111111				
	Auger and sampler r	efusal at 39 feet	1.	43-50/1"	SS11,					
	GROUNDWATER DA	ATA DRILLING	G DATA			Drawn by: SK	Checked by: SK	App'vd. by: AWR		
	X FREE WATER NO			W STEM		Date: 7/15/21	Date: 8/2/21	Date: 8/3/21		
ENC	DUNTERED DURING D						GEOTECHI	NOLOGY		
		GS DRILLER					A Universal Engineering	Sciences Company		
	CME 750Y DRILL RIG HAMMER TYPE Auto						I-70 Corridor Improvements MoDOT Project J6l0624 Wentzville, Missouri			
	ADICC. Deserted	HAMMER EFFIC	CIENCY S	<u>90</u> %		W	entzvillė, Misso	uri		
REMARKS: Perched water at 15 feet						LOG OF BORING: B-19				
						Dro:	act No. 1022	438 U3		
REM REM						Proj	ect No. J032	438.03		

Surface Elevation: 641.8 Completion Date: 7/2/21 Northing: 1083722.34 Easting: 716519.60		GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0 _i 5 1 STANDARD	PENETRATION	□ - SV .0 2.5 RESISTANCE			
DEPTH IN FEET	DESCRIPTION OF MATERIAL		GRA	PT BLOW CORE RE	SA	WATER CONTENT, % 10 20 30 40 50				
	Fill: brown, lean to fa	t clay	***	0)						
				2-1-1	SS1	A ::::::::	· · ·			
	Soft, brown, LEAN C	LAY - CL	- 333							
- 5-				0-1-2	SS2	X :::::::	1 🗷 1111111			
	Medium stiff to hard	brown and gray, FAT CLAY - (CH)		2-3-4			1111111111			
	Wedam sun to hard,	brown and gray, TAT OLAT - (OII)		()	SS3	:: X ::::::				
					ST4	: : : : : : : : : :	1111111111	::::::::		
10-					014			******		
				115	ST5	1::::::	::::::::	:::::::		
	─ some gravel			2-4-6	SS6		:::::::::	:::::::		
- 15-	- Some graver			()	000					
						:::::::::				
				6-12-20	SS7		1 1 1 1 1 A 1 1 1			
- 20-				0	-					
	Medium dense, brow	n, silty SAND - SM				:::::::::	::::::::	:::::::		
				6-12-18	SS8		1			
- 25-				0						
	Medium dense, brow	n, clayey SAND - SC				:::::::::	:::::::::	:::::::		
				4-5-6	SS9					
- 30 —						1:::::::::	111111111			
		500000						::::::::		
	Medium stiff, brown i	LEAN CLAY, some sand - CL				::::::::::	:::::::::	:::::::		
				2-3-4	SS10		.			
- 35-						1:::::::::	1111111111	::::::::		
	Auger refusal at 36 fo	ee t						:::::::		
						1::::::::	1111111111	::::::::		
						Drawn by: SK	Checked by: SK	App'vd. by: AWR		
	GROUNDWATER DA	ATA DRILLII	NG DATA			Date: 7/15/21	Date: 8/2/21	Date: 8/3/21		
	X FREE WATER NOT AUGER 3 3/4" HOLLOW STEM OUNTERED DURING DRILLING WASHBORING FROM FEET			OLLOW STEM			OFOTFOLIS	101.001		
ENC						GEOTECHN	IULUGY			
	<u>GS</u> DRILLER <u>DWJ</u> LOGGER <u>CME 750Y</u> DRILL RIG HAMMER TYPE <u>Auto</u>						A Universal Engineering S	dences Company		
						I-70 Corridor Improvements				
						Mol	MoDOT Project J6l0624 Wentzville, Missouri			
DC:-	IADIZC:					***	CITE VIIIC, IVII 3501	411		
KEM	EMARKS:						LOG OF BORING: B-20			
						l Proi	ect No. J0324	120 N2		

BORING LOGS (7 OF 7)

Detailed JUNE 2023 Checked JUNE 2023

Note: This drawing is not to scale. Follow dimensions.

Sheet No. S48 of S48

DATE PREPARED

8/18/2023

ROUTE STATE

I - 70 MO

DISTRICT SHEET NO.

BR S48

COUNTY
ST. CHARLES

JOB NO.
J6I0624

CONTRACT ID.

PROJECT NO.